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INTRODUCTION

This report documents the work done by Lehi gh University under contract F30602-97-C-

0065-01. This work involved completing tasks 4.1.1 and 4.1.2 of the original contract.
The results produced are logically organized as investigations into three different but
related topics. Each of these topics forms one chapter in this report. Each of these
chapters is self-contained and includes an introduction and a conclusion. The first
chapter includes an expanded version of work proposed under task 4.1.1. This work can
be summarized as an investigation of the performance of partially adaptive space-time
adaptive processing schemes using MCARM data. The second chapter includes an
expanded version of work proposed under task 4.1.2. This work can be summarized as
the development of a new set of space-time processing algorithms which use prior
knowledge to reduce the number of parameters which need to be adapted. The new
schemes were tested using MCARM data. The final chapter provides analytical
expressions for evaluating the performance of space-time processing schemes in realistic
cases where the reference or training data may have different statistics from the data in
the cell-under-test. Such equations have not yet appeared in the literature and they are
useful for understanding the performance of space-time adaptive processing schemes
when they are tested with MCARM data. The final chapter has results which are
applicable to both task 4.1.1 and task 4.1.2.

1/2




Chapter 1 : Task 4.1.1




1. INTRODUCTION

In airborne radar, target detection is often limited by ground clutter and other
forms of interference. Platform motion causes Doppler shifts in interference returns,
making Doppler filtering alone ineffective. In such cases Space-Time Adaptive
Processing (STAP) offers a potential solution.

STAP has been an active research topic for at least the last two decades. Much of
the interest was generated by the research in [1] and [2]. Since then several algorithms
have been proposed and evaluated using simulated radar data. With the recent
improvements in phased array antenna and digital signal processing technology, a STAP-
based airborne radar system is becoming an attractive alternative for detection of airborne
targets competing with strong clutter returns and jamming, as compared to classical low-
sidelobe beamforming [3].

Current STAP research efforts [4] are focused on a number of interesting issues.
Performance evaluation of several competing STAP approaches is the topic of this report.
In most previous research, STAP algorithms were evaluated using optimistic simulated
data or by manipulating stationary platform measurements to emulate motion. While
simulated data is very useful in the development and analysis of algorithms, a more
complete evaluation includes using actual recorded radar data. Thus, in this report, we
compare various STAP schemes using measured airborne data. A general formulation of
a useful class of STAP processing approaches is developed. This formulation, which
includes most linear processing schemes, unifies the techniques considered.

Assume the radar transmits a coherent burst of M pulses at a constant pulse
repetition frequency fr= 1/T;, where T, is the pulse-repetition-interval (PRI). The time
interval over which the waveform returns are collected is commonly referred to as the
coherent-processing-interval (CPI). The radar antenna used is an array antenna with N

identical elements. Denote the observation corresponding to the i™ antenna element, the




j™ pulse and the k™ range cell as X . It is convenient to denote the data associated with

the k™ range cell as
X, = [xl,x,k’xz,n,k""!XN,l,k!xl,z,k""!XN,M,k]r (D

where a' denotes the transpose of the vector a. We will refer to X, as a space-time
snapshot.

A simple set of STAP schemes that have been suggested can be represented as
an inner product of the conjugate of a weight vector w and the vector Xg. This inner

product

z=w"X, (2)

produces the complex quantity z whose magnitude is often compared to a threshold to
make a decision regarding target presence or absence. The weight vector w may depend
on the estimated interference-plus-noise environment and on the target of interest. In the
well-know sample matrix inversion (SMI) algorithm [2] for example, a popular fully

adaptive algorithm, the weight vector is given, to within a scale factor, as

w=R"V @)

where R is the estimated interference-plus-noise covariance matrix. The estimate is
based on a set of reference data, typically chosen from the surrounding range cells. V is
the normalized target response (X for a target observed without clutter or noise) [5]. In
the case where the interference statistics are known or the estimated covariance matrix is
exactly equal to the true covariance matrix, SMI can achieve optimal performance. A
fully adaptive STAP scheme, like SMI, requires the formation of an NM by NM
covariance matrix. For moderate M and N, the computational cost of the computation of
R becomes excessive for real-time implementation. Further, schemes which estimate R

typically require a large set of independent and identically distributed (iid) reference data




vectors to achieve an accurate estimate for moderate M and N. This requirement may be
unrealistic, since measurements [6] indicate that multi-channel airborne radar clutter data
is often severely non-homogeneous. For this reason the reference data set available for
estimation of clutter statistics is usually quite small. As a result, reduced complexity
approaches called partially adaptive STAP (PASTAP) have been developed whose
computational cost and reference data requirements are more realistic. Some examples of
reduced complexity appro;zlches are given in the next section.

It is important to know how different PASTAP algorithms perform for realistic cases.
This issue is studied in this report. In Section 2 we define a general PASTAP scheme and
give a detailed description of several specific approaches. Performance comparisons

based on measured airborne radar data are presented in Section 3. Conclusions are given

in Section 4.

2. Some Reduced Complexity STAP Schemes

STAP is an active research area and new schemes are continually being developed.
In order to compare schemes, a standard terminology is useful. Here, we will mainly
follow the terminology used in [5]. We caution the reader that other terminology also
appears in the literature. We first define a general formulation of a PASTAP approach
which encompasses many existing algorithms. Next we describe eight specific

approaches which are included in the general formulation. They are

1. Adaptive Displaced Phase-Centered Antenna (ADPCA)
2. subarrayed ADPCA (BDPCA)

3. Beamspace ADPCA (BeamAD)

4. Factored Post Doppler (FTS)

5. subarrayed FTS (BFTS)

6. Extended Factored Approached (EFA)

7. subarrayed EFA (BEFA)




8. Joint-Domain Localized Approach (JDL)
2.1 General STAP Approach

Consider the transformations
5(" (p)= (Ap ® Bp)ka; p=0,1,2,...,P-1 4)

where Xy is the space-time snapshot from the k™ range cell and A, and B, are scheme-
dependent matrices. The operations in (4) can be interpreted as a pre-processor applied
to the received signals. This pre-processing generates data for the adaptive processing to
follow. Note that P vectors are produced by the operations in (4). Typically, the pre-
processing in (4) performs a coordinate transformation and a selection operation.

We describe the adaptive processing on the p™ vector as

v, (p)= SRy ()X« (p)/ )

where

k+Q/2+1 ~

Z Xi (p))~(. (p)" (6)

R, (P) = ’é
i=k-Q/2-1,izk-1,Kk+1
and S is a scheme-dependent steering vector. Ri(p) is the interference-plus-noise
covariance matrix estimated from Q adjacent range cells, excluding the cell-under-test
and the two closest range cells. The estimate in (6) is the maximum likelihood estimate if
the data samples from the Q adjacent range cells are independent and identically
distributed with the same complex Gaussian distribution as the interference-plus-noise in
the cell-under-test. It is straight-forward to generalize (6) to allow the range cells to be
selected differently, including selections which are non-symmetric about the cell-under-
test. We do not discuss these generalizations here since we use only the approach

suggested in (6) in our tests. The term @ in the denominator of (5) is the normalization to

provide CFAR in homogeneous clutter and is given by

® =,/S"R;'S (7)




In different schemes, yx(p) may or may not be the final output of interest. If yi(p)
is the final output of interest, its magnitude will be compared to a threshold to decide if

target is present. For cases where yy(p) will be processed further, we assemble the

complex outputs from each adaptive processor as

Yi=[y, @y, ).y P-1T ®)

and compute

Zim =Y, )

which we call post-processing (after adaptive processing). Typically, f, is the m™
column of a PXP filter matrix F, and Zy, is the final output whose magnitude will be

compared to a threshold to produce a decision.
2.2 ADPCA and its beamspace version

Define a set of P sub-CPIs Xi(p), p=0,...,P-1 in the k™ snapshot. Each sub-CPI
contains possible target returns from K pulses and all N elements. Fig. 1 shows two
different ways to form the sub-CPIs. As indicated in Fig. 1, implementation (é) does not
overlap pulses. Given M pulses in a CPI where M can be divided by K, implementation
(a) generates P=M/K, sub-CPIs. The 0" sub-CPI consists of pulses 0, ..., Ki-1 and the
p™ sub-CPI consists of pulses pK,, ..., pK+K-1. Implementation (b) forms the sub-CPIs
by using the same pulse returns in several sub-CPIs. Given M pulses in a CPI,
implementation (b) generates P=M-K+1 sub-CPIs. The 0" sub-CPI consists of pulses 0,
...» Ki-1 and the p™ sub-CPI consists of pulses p, ..., p+Ki-1. In Fig.1, K, is set to 3
and in implementation (b), neighboring sub-CPIs overlap 2 pulses. Of course, other
overlaping pulse configurations are possible.

The pre-processing we have just described can be put into the framework of (4).

B, is set to Iy which is an NxN identity matrix and




OP(K:—h)(K:

A =

P IK(

O {M-K,-pK +ph}xK,

(10)

where the notation Ogxm refers to an gxm matrix of zeros. h indicates the number of

pulses which are overlapped. In implementation (a) h is set to be zero and in

implementation (b) h is set to be K-1. A} is an MxK; selection matrix.

K element
—
........................... Sw-CPI0
L L] L] L] .:
L] . » L ] .g
: L L[] -« * ..:
prrmmemoemsmsenmresemeeee s Sub-CPI
> * * L] :
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* > * * L]
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. > L d - L 2
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Figure 1) ADPCA sub-CPI formation
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The adaptive processing in ADPCA is described by (5) with the steering vector

S=8S,®8S,

(1)

where S; is the N1 spatial steering vector [5] and S, is a K¢x1 vector, which is composed

of the binomial coefficients, with each coefficient altered in sign (start with positive). As

a particular example, we have

S, = (1,-2,1)

(12)




for a three pulse case.

Typically, post-processing as described in (8) and (9) is employed in ADPCA. In
ADPCA F is a matrix corresponding to a Doppler filter bank, and f,, is the filter
corresponding to the m™ Doppler frequency. A DFT matrix implements the Doppler filter
bank. Thus, a fast fourier transform efficiently computes (9) for all m. 1Zyml, the

magnitude of the final output for Doppler bin m, is compared to a threshold to test for a

target in Doppler bin m.

Subarrayed ADPCA and beamspace ADPCA are both beamspace versions of
ADPCA. B, is used as a beamformer matrix to produce K; < N beams. We focus on
Ks=3 in this report.

In subarrayed ADPCA the beamformer matrix

_ g 0 0
9. 9
S P
Bp= =1 GOn-1 : 9o (13)
Ine- 9,
| 0 o Gy

is employed in (4) , where g = (80s 815 829« gN-.l)T is an N'x1 vector and N'= N-K+1.
The vector g can be any of the popular window functions from the DSP or radar literature
[7.8]. Only results which use the uniform window are provided here. In our preliminary
tests, the uniform window appeared to outperform the other windows we tried so we
focused on this choice.
Each vector produced by (4) will be adaptively processed as in (5) where
s=(,®G)'S, (14)

with S, chosen as the steering vector defined by (11). The post processing is the same as
in ADPCA.

10




Beamspace ADPCA is identical to subarrayed ADPCA, but with Bp= G =[ fn,1, fn 2,
.« fnks 1, where fn;j=1, .. ., K are those columns of NxN DFT matrix corresponding

to K particular angle bins.

2.3 FTS and subarrayed FTS

In factored post-Doppler STAP [5], Doppler processing is first performed on each
spatial channel. Let the Doppler filter applied to the p* spatial channel be f, and assume
f, is chosen from the set of possible Doppler filters in the MXM matrix Fy=[ fo, fi, ....fm
1). Then the pre-processing is described by (4) with Ap=f,, P=M, and B,=In. This pre-
processing transforms the signal into Doppler space. In this case p indicates the index of
Doppler bin in question. Next, the adaptive processing in (5) is employed with the
steering vector defined as in (11) with K; =1. Here S=S§;, since K;is 1. As for most of the
STAP schemes we discuss, tapering could be applied to the steering vector [5]. Post-
processing is not usually employed and lyx(p)l is compared to a threshold to test for a
target in the p'™® Doppler bin.

Subarrayed FTS is identical to FTS but with Bp= G as described in (13). The
adaptive processing is as in FTS with the steering vector defined in (14). Here S, is the
steering vector that is used in the adaptive processing of FTS. Post processing is not

employed.
2.4 EFA andsubarrayed EFA

The extended factored approach (EFA) [9] is a slight extension of the factored
post-Doppler approach. In EFA, adaptive processing is applied to several adjacent
Doppler bins instead of just one. Thus, the pre-processing performs both transformation
and selection. In the case considered here, where the scheme adapts over 3 adjacent bins,

the pre-processing can be described as in (4) with Ap=J,=[ £5.1, fp, fpi1] and B=In.

11




The other quantities are set in a similar manner as for factored post-Doppler STAP

but with the new A,. For example, the steering vector is obtained from

S=(A,®B, 'V (15)
where V is the normalized target response as used in (3). For example, if f;, correspond to
the target Doppler frequency under consideration, the steering vector can be defined as in
(11) with S, =10, 1, 0] .
In subarrayed EFA, the pre-processing is the same as with EFA but with B, set as
in (13). The adaptive processing is defined as in (5) with S as in (15). |

2.5 Joint-Domaint Localized approach (JDL)

In JDL [10], the pre-processor performs two dimensional transformation and
selection. The data is transformed from the space-time domain into the angle-Doppler
domain. This pre-processing can be described as in (4), with Ap=[fn1, fm2, ...y fmxil,
where fij j=1, ..., K, are K; columns of an MxM DFT matrix and with By= G=[ f,;,
fo2, ... faxs 1, where f£,;j=1, ..., K are K, columns of NXN DFT matrix. As for FTS
and EFA, only the post processing corresponding to a single p must be calculated to test
for a target at a particular normalized Doppler and spatial frequency.

If we focus on K; = K, =3 and consider the case where the target to be detected

has the Doppler frequency corresponding to fy,» and the spatial frequency corresponding

to fy2, then the adaptive processing in (5) is used with

S=[0 1 o]ls[o 1 o] (16)

More precisely, the steering vector has all its entries equal to zero except for the

one corresponding to the spatial and Doppler frequency of the target. No post-processing

is employed for JDL.

12




3. MEASURED DATA RESULTS

To test the STAP algorithms described in section 2, we use data from the Multi-
Channel Airborne Radar Measurements (MCARM) database, flight 5, acquisition 575.
See [11,12] for detailed information about the MCARM program and the data. For each
experiment, a single target signal with amplitude 0.05, a particular normalized Doppler
frequency and a particular spatial frequency was inserted in a particular range bin.
Reference data are selected from consecutive range cells on each side of the cell-under-
test, excluding the cell-under-test and the two closest cells. We employ normalized test
statistics as in (5), which provide a constant false alarm rate (CFAR) characteristic for
homogenous clutter [13]. The parameters used in each of the STAP algorithms studied
are given in the Appendix.

For each example, we provide plots of the magnitude of the normalized test
statistics for a set of range bins including the target range. We judge a scheme by how
large the test statistic is at the target range in comparison to other ranges.

In the first example, we inserted a target at range bin 150 for the cases shown in
Table 1. The location of the targets and an estimate of the clutter (plus noise) power
spectral density (psd) are illustrated in Fig. 2. As visible from Fig. 2, the psd estimate
used is rather crude and is provided to give a rough description of the clutter
environment. In the estimate, the periodogram method [14] is used with blackman
windowing. The operations are applied just on the cell-under-test data (no neighboring
range cells are averaged). We found that some of the artifacts can be removed by

averaging, but this was not considered necessary in this case.

13




Case Normalized Doppler | Spatial

Frequency Frequency

a -0.2656 -0.2656

b -0.0312 -0.0312
c 0.125 0.203

d -0.0312 -0.1875
-0.0312 0.203

f 0.3593 -0.1875

g -0.1875 0.3593

Table 1) Test cases for each example.

A summary of the results is given in Table 2. Fig. 3 through Fig. 9 present the
results for most of the schemes tested. FTS and subarrayed FTS generally perform
poorly, so their results are not shown. In this example, generally JDL provides best
results. JDL is best in every case except cases d and e. In case d, BeamAD slightly
outperforms JDL and ADPCA, but the difference is quite small. In case e, EFA
outperforms the others, however JDL also performs well. The apparently large
interference indicated by Fig. 2 near the normalized Doppler frequency -0.0312 could be
the reason why JDL is not best in these two cases. These are apparently difficult cases
where no scheme can really excel. Table 2 shows that case b is also quite difficult, but
here JDL performs much better than the other schemes. The extra clutter ridges in Fig. 2
are discussed in {15] and [16].

In the second example, we inserted a target at range bin 350. We present results
for the same cases in Table 1. The best three schemes for all the cases are given in Table
3. The location of the targets and an estimate of the clutter psd is given in Fig. 10. The

normalized test statistics for the six best schemes tested for each case in Table 1 are given

14




in Figures 11 through 17. The results indicate that none of the schemes always
outperforms all the others. However, post-Doppler algorithms are generally better than
pre-Doppler algorithms. Either JDL or EFA were best in all but case b. In case b, where
the target is inserted in the largest clutter of all cases, BEFA is only slightly better than
EFA and JDL.

Next, we inserted a target at range bin 415. We present results for the same cases
as in previous examples. The location of the targets and an estimate of the clutter psd is
given in Fig. 18. A summary of the results is provided in Table 4. Here, for cases b, ¢, d,
f, and g either JDL, or BEFA provide best performance. In the other cases, EFA is best
and JDL also performs well. JDL performs well in every case except case b. Even in this
case, its performance is adequate. EFA and its beamspace version are best in some cases
and near-best in others. ADPCA and its beamspace version give good performance in
number of cases, but these schemes were never best in this example.

Finally, we test the same cases as before when the target is inserted in range bin
500. The locations of the targets and an estimate of the clutter psd is given in Fig. 19. A
summary of the results is given in Table 5. Again JDL, EFA and BEFA outperform the
other algorithms except for case € where ADPCA is best.

4. CONCLUSIONS

In our tests, JDL and EFA generally perform very well. Subarrayed EFA also
shows good performance in many situations. The common element these schemes share
is post Doppler processing. This type of processing, used in the correct way, appears to
be superior when using measured data. This appears to be the major result of this study.
When there is a strong interference near the target, case d and e in Table 5 for example,
ADPCA performs well and sometimes outperforms all the other schemes. The reason
appears to be related to the extra whitening provided by its steering vector.

This is one of the few STAP studies we have seen which uses real airborne radar

measurements and thus we feel these results are interesting. Judging performance using

15




measured data is difficult since one can't directly extract probability of detection and
probability of false alarm, the accepted measure of performance for radar signal detection
problems. However, measured data studies are still important to obtain a more complete
assessment of performance. In the current study we present comparisons only for a
particular configuration of each algorithm. We have tried to pick the most popular or at
least a reasonable configuration for each algorithm. The results may be different for
different configurations. Further we have tested the algorithms for many different range
bins for two different data sets (flights) and based on these cases the results given here
appear to be representative. However, the results could be much different for some data
sets we have not tested.

We have obtained results for a fairly large number of different cases. Due to space
limitations we have provided only a limited set of these in this report. We believe that
further study using measured data is needed and we hope to see more papers by other
research groups on this topic. Hopefully other data sources will become available and
these can be compared to results obtained using the MCARM database. Most

importantly, we believe that techniques for assessing performance with measured data is

itself a topic which deserves attention.
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Figure 2) Power spectrum plot of range 150
Case | Normalized Doppler Spatial The 3 best D Figure
Frequency Frequency schemes
a JDL 36
-0.2656 -0.2656 BEFA 25 3
BeamAD 16
b JDL 10
-0.0312 -0.0312 4
c JDL 30
0.125 0.203 EFA 12 5
d "~ BeamAD 8
-0.0312 -0.1875 JDL 7 6
ADPCA 6
e EFA 20
-0.0312 0.203 JDL 12 7
BeamAD 5
f JDL 43
0.3593 -0.1875 EFA 38 8
. BeamAD 30
g JDL 38
-0.1875 0.3593 BEFA 18 9
BeamAD 7
Table 2) The three best schemes for all the cases when the target is inserted at range 150
(D is the approximate difference between the normalized test statistic at the target and the
largest peak in the normalized test statistic at some other range).
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Case | Normalized Spatial Frequency | The3best | D Figure
Doppler Frequency schemes
EFA 24
a -0.2656 -0.2656 JDL 18 11
BEFA 5
BEFA 15
b -0.0312 -0.0312 EFA 12 12
JDL 10
JDL 34
c 0.125 0.203 EFA 25 13
BEFA 13
EFA 28
d -0.0312 -0.1875 JDL 20 14
ADPCA 12
EFA 22
e -0.0312 0.203 JDL 18 15
ADPCA 7
EFA 48
f 0.3593 -0.1875 JDL 43 16
BeamAD 24
JDL 33
g -0.1875 0.3593 BEFA 18 17
BeamAD 14

Table 3) The three best schemes for all the cases when the target is inserted at range 350.
(D is the approximate difference between the normalized test statistic at the target and the
largest peak in the normalized test statistic at some other range.).
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Figure 18) Power spectrum plot of range 415

Case | Normalized Doppler | Spatial Frequency The 3 best D
Frequency schemes

a EFA 25

-0.2656 -0.2656 JDL 22

ADPCA 12

b BEFA 25

-0.0312 ~0.0312 BeamAD 18

EFA, ADPCA | 15

c BEFA 30

0.125 0.203 JDL 23

BeamAD 12

d JDL, BEFA | 20

-0.0312 -0.1875 BeamAD 18

EFA, ADPCA | 16

e EFA 28

-0.0312 0.203 JOL 24

ADPCA 15

f JDL 45

0.3593 -0.1875 BeamAD 35

BEFA 32

g JDL 42

-0.1875 0.3593 EFA 20

BeamAD 18

Table 4) The three best schemes for all the cases when the target is inserted at range
415. (D is the approximate difference between the normalized test statistic at the target
and the largest peak in the normalized test statistic at some other range)
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Figure 19) Power spectrum plot of range 500
Case | Normalized Doppler | Spatial Frequency The 3 best D
Frequency schemes
a JDL 32
- 0.2656 - 0.2656 EFA 13
ADPCA 7
b JDL 22
-0.0312 -0.0312 EFA 20
BEFA 15
c JDL 36
0.125 0.203 BEFA 12
EFA, BeamAD | 7
d JDL 26
- 0.0312 -0.1875 EFA 20
ADPCA 10
e ADPCA 22
- 0.0312 0.203 JDL 18
EFA 15
f JDL 38
0.3593 -0.1875 EFA, BEFA 28
BeamAD 23
g BEFA, JDL 33
- 0.1875 0.3593 BeamAD 17
EFA 15

Table 5) The three best schemes for all the cases when the target is inserted at range
500. (D is the approximate difference between the normalized test statistic at the target
peak and the largest peak in the normalized test statistic at some other range)
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APPENDIX

Scheme M | N | Kt|Ks A, G DOF
ADPCA | 128 |22 | 8 | - | [Opo lo Opzsops ]’ > | 66
EFA 128 | 22 | 3 | - | [f128.p-1,f128,0p:F128,0p+1] 22 66
FTS 128 | 22 - f128,0p P 22
Beamspace See
ADPCA 128 {22 | 3 | 3 [ Opxa, I3, Op1zs.ppa 1 Note 9
Subarraying | 128 {22 | 3 | 3 [ Opss, I3, O1z5.ppea 1 *G 9
ADPCA
Subarraying | 128 |22 | 3 3 [f128,0p-1,F128,0p,T128,0p+1] *G 9
EFA
Subarraying {128 122 | 3 | 3 f128,0p *G 3
FTS
JDL 128 | 22 { 3 | 3 | [f128,0p-1,F128,0p:F128,0p41] See 9
Note

Table 6) Parameters for comparison tests in this study.

DOF: number of degrees of freedom. It is equal to the Q in (6) in this paper.

* G is the beamforming matrix which is formed as described in (13).

Note: MCARM data is not collected by a uniformly spaced linear antenna array,

so its beamforming matrix is relatively complicated. This G matrix used in

beamspace ADPCA and JDL can be obtained by using measured steering

vector information provided with the MCARM database. See the discussion on

modSA at [11].
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Chapter 2: Task 4.1.2
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1. Introduction

Adaptive space-time processing schemes for airborne radar have received significant
attention recently [1]. Typically these schemes involve using observations from
neighboring range cells, called reference data, to estimate the covariance matrix of the
clutter-plus-interference in the range cell-under-test. The estimated covariance matrix is
then used to define a weight vector in a linear processing scheme. The weight vector is
chosen with the hope that it will suppress the clutter-plus-interference in the range cell-
under-test. If the estimated covariance matrix accurately represents the true covariance
matrix for the cell-under-test then most STAP schemes perform well. There are many
reasons why, in practice, this may not occur. The data taken from surrounding range cells
often have different statistics from data taken from the cell-under-test. Further, the amount
of reference data available which can be used in the estimation is usually quite limited.

Often this is a consequence of nonstationarity.

To overcome these difficulties, reduced-dimension STAP schemes [1, 2, 3, 4, 5] have
been devised which have shown promise. In our own research [3, 4, 5], we have shown
that a particular approach suggested by Rome Laboratory engineers, the Adaptive
Displaced Phase Centered Antenna (ADPCA) approach, provides good performance in
some cases with real data. Other researchers [1, 4] have shown that the Extended Factored
Approach (EFA) and the Joint-f)omain Localized (JDL) approach can also provide good
performance in some cases. In this research, a new methodology for constructing robust
STAP schemes is proposed. In order to demonstrate the idea we use a simple model for a
case with ground clutter only and we show that the resulting scheme can provide good

performance in tests with measured radar data.
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In section 2, we introduce the new approach and describe its application to a set of STAP
algorithms. In section 3, we describe how to choose free parameters in the approach. In
section 4, we discuss the application of the approach to four specific STAP algorithms.
Numerical performance results are given for a measured radar data set. Conclusions are

given in section 5.

2. General approach for modified scheme

Here we study a new set of space-time processing algorithms for airborne radar. In the
spirit of ADPCA and other reduced-dimension algorithms, our new algorithms attempt to
estimate fewer parameters than fully-adaptive approaches. In our new schemes the
reduction is achieved by using a priori information that is riot yet being exploited. In this
report, we focus on using our knowledge on the structure of ground clutter, but other prior
knowledge could also be exploited. For example, one might want to incorporate
knowledge of jammers or interference from previous scans or one might have knowledge
of previously detected targets. Using prior knowledge should allow our new schemes to
perform well even when given only small amounts of reference data, which may have a

statistical description which is slightly different from that for the cell-under-test.
A. Traditional schemes

Assume that the observations to be processed are taken from M different pulse returns

. h .
received by N antenna elements from the k' range cell. Each return is assumed to

contain a possible signal in additive noise-plus-clutter.  Denote the observation
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. - th :th .
corresponding to the " pulse at the J ™ antenna element as X;- Each observation is a

complex number corresponding to the in-phase and quadrature components of the received

waveform. The observations to be processed are ordered as
— T
X, = (X5 X000es Xy 5 Xy 5eens Xpg ) (1)

T
where X~ denotes the transpose of the vector X.

A reasonably large set of STAP processing schemes can be described as follows. The
description is broken into three parts: pre-processing, adaptive processing and post-

processing. The pre-Processing can be described by
X.(p)=(A,®B)"X,, p=0l12,.,P-1 @

where X . is given in (1). In (2) A‘D and BP are scheme-dependent matrices. The
adaptive processing can be described by

¥ (p)=S"R (X, (p)/®, p=012...P-1 0
where S=5 ®S, “4)
S, is the scheme-dependent temporal steering vector and Ss is the scheme-dependent
spatial steering vector. In (4) ® stands for an outer product. The quantity (I)p is the

normalization needed to provide a constant false alarm rate (CFAR) in homogeneous

clutter and is given by

@, = /S"R;'(p)S -

The post-processing is not necessary if y, ( p) is the final output of interest. In this case,

|yk ( p)l is compared to a threshold directly to decide if target is present. If Yy, ( p) is not
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the final output of interest, we should assemble all the outputs into a vector as

T
= [yk (O), Y. (1),... s Yy (P — 1)] , then compute
— fH
Zem = X, ©)
typically, fm is the m"™ column of a P X P filter matrix F,and 2, 1s the final output

whose magnitude is compared to a threshold to make a decision.

In the traditional schemes we considered, the estimated covariance matrix is calculated as

1 k+LI2+1
% % H
R(p=— XXX (p )
L io1r2 T ko161
by averaging over L range cells (assuming L is even) surrounding the k" range cell

excluding the cell-under-test and the two closest range cells.

B. Modified schemes

In order to use our prior knowledge of the nature of ground clutter, namely the known
structure of the clutter ridge in angle-Doppler space, we use a simple model for ground
clutter proposed in [1]. Assume that the clutter portion of the reference samples is Gaussian

distributed with the two-dimensional power spectrum density (psd) described in [1]

Pc(fnfs) z"*‘ <t exp| - (fr_fa,d) +(f_y—fcs,d) ®)

= 27r0' O'fsd 20, 20,

which is a function of normalized Doppler frequency ﬁ and spatial frequency fs. The

psd in (8) consists of L Gaussian-shaped humps, the d th of which is centered at

(f, R fs) = (fa, 4 fm, d) and has amplitude controlled by O'Z , and a spread in angle and
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Doppler controlled by O ;s ,ad O ; ;- Our approach will assume the clutter samples are

described by the psd in (8) and the data will be used to estimate some of the parameters in
(8). The other parameters in (8) will be fixed at values chosen to fit a wide set of measured
data. Once the estimates for the parameters in (8) are found, the covariance matrix for

clutter described by (8) is given by [1]
L
- 2
Rc - 2 O-c,d Ct,d ® Cs,d )
d=1
where Ct’ , and Cs, , are Toeplitz matrices specified by

. 2o g) 2, 2076 5 g (M=1))2+i( M=1)27F,
C, , =Toeplitz {[1 g ond) iad | TR ' i ]} (10
and

. ~2(R0 5 g )+ 27f —2(n6 s g (N-1) 2+ (N-1)27f 5,
Csd=Toep11tz{[1 Y R ’ ”‘“’]} (11)

respectively.

Now we can modify the traditional schemes by using the covariance matrix in (9),

possibly with slight modification, to replace the covariance matrix estimate of (7).

For our modified schemes, the covariance matrix is derived as

R (p)=E{(%.(») -E{ .0} (n-E{Z.P)])'}
=(A ®B,)"R.(A,®B,)

L
=(4,®B)"(),02,C,®C, A ®B,)
d=1
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L
=Y 02,(A'C,A)® (B,C,,B,) (12)
d=}

where (9) was used along with Theorem 8.8.2 and Theorem 8.8.6 in 6. C ' d and Cs’ J

are given in (10) and (11).

To illustrate the modified approach just described, the Sample Matrix Inversion algorithm
(SMI), the Adaptive Displaced Phase-Centered Antenna algorithm (ADPCA), the
Extended Factored Post-Doppler algorithm (EFA) and the Joint-Domain Localized

algorithm (JDL) are used as examples. We call the new schemes modified SMI, modified
ADPCA, modified EFA and modified JDL respectively.

For the modified schemes, we do not develop our covariance matrix estimate by
performing averages over the adjacent range cells. Instead the covariance matrix is
determined by the model parameters in (9) which are obtained from the range cell under
test. Thus mismatch between the statistics of the reference data and the data from the cell
under test is avoided, which can be a problem for traditional schemes in a highly non-
homogeneous environment. In the traditional SMI, ADPCA, EFA and JDL schemes used
in our comparison, we use a set of reference samples on either side of the cell-under-test.
In our examples, 66 cells (33 on either side of the cell-under-test) are used for SMI,
ADPCA and EFA. 10 cells are used for JDL (5 on each side of the cell-under-test). A

covariance matrix is formed by averaging the covariance matrix estimated from each of

those adjacent cells.

Obviously, the parameters for the model in (8) determine the required covariance matrix.
Our tests indicate we do not need to estimate all these parameters for every range cell to

achieve good performance. Our approach assumes some of the parameters are fixed at
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reasonable values previously estimated. In particular, the parameters fixed are observed to
have little impact on performance. We only devote computational resources to obtain the
other ‘key’ parameters. Below is the discussion of each of the ‘key’ parameters and how to

choose proper values for them.

3. Parameter choice

We use data that comes from the MCARM [7,8] database flight 5, acquisition 575 in our
discussion. In order to obtain an estimate of the psd in the angle-Doppler domain, we
apply an FFT to transform to the Doppler domain first, then we use the normalized steering
vectors provided with the MCARM database to transform to the angle-Doppler domain.
This would be essentially equivalent to performing a two dimensional FFT if the antenna

array were a uniformly spaced linear array.

A. Slope of clutter ridge

The most important parameter of the model in (8) is the slope of the clutter ridge along
which we center the Gaussian functions. The slope of clutter ridge is related to airplane’s
velocity which might be known directly from instruments on the aircraft. In our
experiments, we have used some fast image processing algorithms to find this slope

directly from data.
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B. Number, amplitudes, and positions of humps

For simplicity, we fix the number of humps used and place them uniformly along the
clutter ridge. If the number of humps is too small, the model cannot represent the real
clutter well. On the other hand if the number of humps is too large, computational
complexity increases with little performance improvement. Extensive testing indicated

that using 4 or 5 humps is a good choice.

We also fix the amplitude of the humps. We found that reasonably good performance is
obtained by setting the amplitude of each hump to be approximately 15% greater than the

maximum value of the estimated psd. In this report, all the results shown use this choice.

C. o0,,,0 a4 - Parameters controlling the spread of the hump

Extensive experiments showed that spread parameters should be chosen differently for the
pre-Doppler schemes (such as the modified SMI and the modified ADPCA) and the post-
Doppler schemes (such as the modified EFA and the modified JDL).

For the pre-Doppler schemes, two ways are suggested to set the parameters O 71420 fa-

One is setting a ‘fixed’ value for all humps. The fixed value should be set larger than that
the estimated psd implies. The other method attempts to provide values that more closely
match the estimated psd. In order to explain when each of these methods should be used
we show some examples. We inserted a single synthetic moving target with a specified
normalized Doppler frequency into a specified range cell to compare the detection

performance for the two cases.
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We present results which show the magnitude of the test statistic for the range cell-under-
test and for surrounding range cells as in [5]. If the response at the range cell where the
target is inserted is much larger than surrounding range cells, then we judge performance as
being very good. We normalized all adaptive weights by a scalar (see (3) in [5]), which

provides a CFAR test for homogeneous cases. The amplitude of the target is set at 0.05.

In the first example, we set O'f“. = O'f”. =01, fori= 1,...,5, and we inserted a

single target with spatial frequency' 0.164 and normalized Doppler frequency 0.078, 0.156,
or 0.312 in range bin 350. In a second set of results we inserted a single target in range bin
415 at the same set of spatial and Doppler frequencies. We present the results for modified
ADPCA. The results are illustrated in Fig. 1.

In the second example, where we choose the spreads to more closely match what is

observed in the psd estimate, we set O Iy =0 i =0.01, i=1,5, and

o) i o i 002, i= 2,3,4. For this case, we get the performance shown in

Fig. 2.

We note that for the target with normalized Doppler frequency 0.078 (whatever the range
bin), the performance in the second case is much better than the first one. On the other

hand, for the target with normalized Doppler frequency 0.156 and 0.312 (whatever the

range bin) , the first case with ‘fixed’ and ‘larger’ O

d? o) fod will be better. The reason is

that when target has the normalized Doppler frequency 0.078, its position is near the clutter

ridge. If the spread parameters are too large, the target itself will be significantly

! In all the tests of this report, the spatial frequency of target is fixed at 0.164. Experiments showed that these
results are representative.
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suppressed. Thus, in this case, we should choose the parameters ‘carefully’ and use
parameters which match the true parameters well. In the other cases, when the target has
the normalized Doppler frequency 0.156 or 0.312, the target position is not so close to the
clutter ridge. In this case it is better to use larger spread parameters to provide increased
clutter suppression, since the target will not be suppressed when this is done. In practice,

we can compare the relative target to clutter ridge position to a threshold to decide which
way the O, ,,0 1.4 Parameters should be set. While the examples provided here are for

modified ADPCA, further tests demonstrated that the conclusion is the same for all the

other pre-Doppler processing schemes we tested.

For the post-Doppler schemes, we found that no matter where the target is in the angle-
Doppler domain, the best choice for the spread parameters O 4420 4 is using those that

closely match the observed psd.
Four modified schemes are analyzed in next section and parameters are chosen according

to the discussion in this section.

4. Performance comparison

Here, we will investigate the performance obtained when using the modified SMI, the
modified ADPCA, the modified EFA and the modified JDL algorithms. Specifically we
compare the performance of the modified scheme with that for the corresponding

traditional scheme. The comparisons are similar to those in Fig. 1 and Fig. 2.
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A. SMI

In our tests of SMI we use M=22 pulses and N=22 antennas in the adaptive processing.

For the SMI scheme, we have Ap =1,. Bp =1, in (2), where I,,, I, are MXM

and N XN identity matrices respectively, S , and S , are the target temporal and spatial

response vectors respectively [1]. Post-processing is not necessary for SML

First, we inserted a single target with spatial frequency 0.164 and with normalized
Doppler frequency of either 0.078, 0.156, or 0.312 in range bin 350. In a second set of
tests, a single target with spatial frequency 0.164 and with normalized Doppler frequency
of either 0.078, 0.156, or 0.312 was inserted in range bin 415. In each case the amplitude
at the target was 0.05. Using modified SMI, we obtain the results in Fig. 3. Traditional
SMI yielded the results in Fig. 4. For the case of range bin 350, the performance of the two
schemes is close except when the target is far from the clutter ridge. In particular, the
performance of the traditional SMI scheme in Fig. 3(e) is much better than that of the
modified scheme in Fig. 4(e). On the other hand, the modified scheme is always much

better for range bin 415 as illustrated in Fig. 3 and Fig. 4.

In order to explain the difference between the results for range bin 350 and those for range
bin 415, we consider Fig. 5 which shows average energy as a function of range bin. Near
range bin 350, the variation is not too great. In this case it is advantageous to average over
range when estimating the covariance matrix and this leads to the good performance of
traditional SMI. Since traditional SMI is optimum when the estimate of the covariance
matrix is perfect, it is reasonable that we cannot outperform SMI in some cases where this

is close to being true. On the other hand, Fig. 5 shows a large jump in energy near range
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bin 400. So this would impact the averaging performed in the traditional schemes when a
target is inserted in range bin 415. This non-homogeneous reference data leads to the poor

performance of traditional SMI and in turn to the superior performance of modified SML

B. ADPCA

For ADPCA, the matrices Ap and Bp uséd in (2) are

0

pxK,

A =1 , B =1, (13)

_O(M-K,-p)xx, |
where the notation qum refers to a X m matrix of zeros. In this research M is set to 128,

N is set to 22 and k, is set to 3. The AP in (13) groups the M pulses in subgroups of size

3 with each group overlapping by 2 pulses. In the adaptive processing part,

S ;= [1 -2 1] , and Ss is the target spatial response vector. In the Post-processing

part, f = 18 the Doppler filter corresponding to the target Doppler frequency.

There are a number of advantages to partially adaptive schemes in general and ADPCA in
particular, see [3, 4] for a discussion on these issues. In order to compare the performance
of the traditional ADPCA scheme and the modified ADPCA scheme, we consider the same
cases as for SMI. In addition, we also considered targets with normalized Doppler
frequency of 0.039, 0.117 or 0.234. The results for modified ADPCA and traditional
ADPCA are shown in Fig. 6 and Fig. 7 respectively. The modified scheme is clearly better
for cases where the target has the normalized Doppler frequency 0.039 or 0.078, (when the
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target is near the clutter ridge). For cases where the target has the normalized Doppler
frequency 0.117 or 0.156, (where the clutter ridge is not so close to the target), the modified
scheme results are significantly better for range bin 415. However, performance is about
the same when the target is in range bin 350. For cases where the target has the normalized
Doppler frequency 0.234 or 0.312, (where the clutter ridge is far from the target), the
traditional scheme is better for range bin 350 while the schemes provide about the same
performance for range bin 415. Taken collectively these results indicate the modified
scheme should be used in non-stationary cases. The advantages seem to be especially clear

when the target is near the clutter ridge.

C. EFA

For the EFA scheme, the pre-processing is as in (2) with
Apz[fp—l’fp’fp-l»l] Bp=IN’ (14)

where f,_,f,,f,, are three adjacent Doppler filters and J, corresponds to the

T
normalized Doppler frequency of target. The adaptive processing uses S , = [0 1 O]

and Ss set to the target spatial response vector. Only processing for a single P must be

performed and so post-processing is not needed.

The results for modified EFA and traditional EFA are given in Fig. 8 and Fig. 9. The
results for range bin 350 indicate that when the target is inserted far from the clutter ridge
(target with normalized Doppler frequency 0.234 or larger), the modified scheme achieves
significantly better performance. In the other cases, the modified scheme is slightly better.

For range bin 415, the modified scheme provides better results in all cases except the case
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in which the target has normalized Doppler frequency 0.117. Since we have already
identified range bin 350 as an almost stationary case and range bin 415 as a highly non-
stationary case, these results are reasonable. It is known that in a nearly homogeneous
case, we should use the traditional scheme since in this case the estimate of the covariance
matrix is a maximum likelihood estimate. In a highly non-homogeneous case, it is

reasonable that the modified scheme can provide better performance.

D. IDL

For JDL the matrices in (2) should be taken as
A, =frisfos frn) B, =18,158,08,), (1)
where fp—l , fp , fp . are three Doppler filters and fp is that filter which corresponds to
the normalized Doppler frequency of target. fp_1 and fp .1 are Doppler filters
corresponding to neighboring Doppler frequencies. 8412 8,58, A€ three spatial filters

and 8, is that filter which corresponds the spatial steering vector of the target. g . and

g-1
8, are spatial filters corresponding to neighboring spatial frequencies. The steering
vector S in the adaptive processing is

§S=§,®S =[0 1 0]®[0 1 0] (16)
As for EFA, processing must be performed for only one P so post-processing is not

needed.

52




We repeat the tests made for EFA for JDL to compare the performance of the modified
and the traditional schemes. The results are given in Fig. 10 and Fig. 11 respectively.
When the target is inserted in range bin 350, the performance of modified scheme is much
worse than the traditional scheme. The problem seems to be that traditional JDL performs
very well in these cases. When the target is inserted in range bin 415 far from the clutter
ridge (target with normalized Doppler frequency 0.234 or 0.312), the modified scheme is
better. In the other cases considered for range bin 415, the performance is about the same.
Thus the performance of modified JDL is rather poor in the homogeneous case. However

in most non-homogeneous cases, it performs well.

5. Conclusion

We have suggested the use of some modified schemes for adaptive airborne radar, which
use the knowledge of the structure of the interference. The specific numerical results given
use a model which only assumes ground clutter, while these results are obtained for a

measured radar data set which includes other interference.

From the comparisons, it appears that the modified scheme can provide good performance
in the cases that are traditionally considered to be difficult. It performs better in non-
homogeneous cases when compared to schemes which average over range to estimate the
required covariance matrix. This is reasonable since the modified schemes obtain the
covariance matrix from a single range cell. However, when the target is inserted in a

homogeneous environment, in most cases the traditional schemes are better.
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Figure 7) Performance for traditional ADPCA when target is inserted in a particular
range bin with a particular normalized Doppler frequency. In each case the normalized

spatial frequency of the target is 0.164.
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Chapter 3 : Performance Analysis

Applicable to both Tasks 4.1.1 and 4.1.2

Analysis of STAP Algorithms for Cases with Mismatched Statistics
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Introduction

In most adaptive radar implementations, the clutter-plus-noise in the cell-under-test is
characterized using samples taken from range cells that neighbor the cell-under-test. This
can lead to a mismatch between the true clutter-plus-noise statistics (in the cell-under-
test) and those used to design the adaptive processing scheme. Such mismatches can
occur in nonhomogeneous noise-plus-clutter cases [1]. The purpose of this research is to
develop analytical formulas that characterize the loss in performance due to this
mismatch. These formulas should be useful as a performance metric for developing
STAP schemes that are not so sensitive to mismatch. The focus is on the constant false
alarm rate (CFAR) version of the sample matrix inversion (SMI) algorithm, but the
analysis is extended to other algorithms also. The noise-plus-clutter, which includes

clutter, jamming, and noise, is assumed to be a complex Gaussian process.

Consider a CFAR version of the SMI algorithm of the type discussed in [2,3] with the

test statistic

2
H o -1

"R,

AAMF = ‘

T 7T ey
s"R, ls‘

In (1), the observed N dimensional complex vector x consists of either zero-mean
complex Gaussian noise-plus-clutter with covariance matrix R, or signal plus zero-mean
complex Gaussian noise-plus-clutter with covariance matrix R, The signal which is
added to the noise-plus-clutter is k s where s is a unit length signal vector which is
completely known and K is an unknown complex constant. The magnitude of K sets the
signal-to-noise ratio. The denominator of (1) provides the correct normalization for

CFAR (for cases without mismatch). While it would be desirable to use the true
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covariance' R, in (1) in place of R., R; is not available. Instead an estimated covariance
matrix R, is used. R, is obtained from the maximum likelihood (ML) estimate for the case
where a set of independent reference vectors x(k), k = I,...,L are available, all with the

same distribution as the cell-under-text data x. Specifically, R, is taken as

R = ix(k)x(k)” @)

which differs from the ML estimate by a scale factor. Any scale factor modification of
(2), and thus R,, leads to the inverse of this same scale factor change in (1) which can be
incorporated into the threshold (1) is compared to. Note that in practice one frequently
finds R, is not close to a scaled version of R, due to a variety of reasons. In fact, the
expected value of R, may differ from L R, which implies that even for very large L, the
value of (I/L)R, will not converge to R, For the purpose of this paper we assume a
mismatch in the reference data such that ( 1/L)E{R.} = Ry # R,. For simplicity we assume
that the reference data vectors are independent and identically distributed (iid) with a
zero-mean complex Gaussian distribution with covariance matrix R,,. Also, the

reference data are independent from the data from the cell-under-test.

Distribution of the Test Statistic

First apply a coordinate transform, which consists of multiplication by Ry;'?, to the
observed vector from the cell-under test, the reference data vectors and to the signal
vector. This transform whitens the reference data. Next, normalize the transformed
signal vector so that it is again a unit vector. Then, call this transformed unit signal
vector v. The operation is equivalent to scaling the signal R, '?s by dividing by
(s"R.s* s)"2. So that signal-to-noise ratio is maintained, the transformed signal is taken to

be Bv = [(s"Ry's)" k] v. The important parameter |A1° is called the signal-to-secondary

! This would lead to (1) being optimum [9].
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noise ratio (SSNR). It plays a role similar to the role the signal-to-noise ratio plays in
cases without mismatch. Next, another transformation of coordinates, which consists of
multiplication by ( v, BVH )H, is made to the cell-under-test vector, the reference data
vectors and to the signal vector. Here B, is a matrix whose N-I rows consist of a set of N
dimensional vectors which span the space orthogonal to v. The overall matrix ( v, B,” )
is taken to be unitary so that the signal and noise powers are preserved. Call the
transformed vector for the cell-under-test y = ( d, bT)T. Here d is a scalar that describes
the component of the vector R.s”x which lies in the direction of R.;”s. On the other
hand, b is an N-1 dimensional vector describing the component of de'”zx that is
orthogonal to R,s%s. For the transformed reference vectors we employ the notation y(k)
= ( d(k), b(k)")". The transformations made have a similar flavor to those used in [4] for
a similar purpose. These transformations also convert the adaptive filtering structure
from the standard “direct-form” to the “generalized sidelobe canceler” form [5,6]. For
generality, we could assume that the b and b(k) components are multiplied by the matrix
u" to obtain z = ub and z(k)= u?b(k) and that z and z(k), k=1,...,L are used to form the
test statistic. This allows consideration of rank reduction schemes. For cases without
rank reduction, just take u to be an identity matrix. If rank reduction is desired then u is
taken to be a column rank M unitary matrix where M < N-I. Under the assumptions

outlined, we find that (1) becomes (see Appendix)

)
~AH H-1
rRz

4

A e = 3)

I\_lA
O-d - zdR

where

£ =3 2(k)d (k)" “

k=1

= Y dWdk)" ®
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and

t~

D _ H
R, =Y z(k)z(k) (6)
k=1
Using the transformations described yields

E{R}=R,=Lu"B,R}*R ,R:*B u = Lu"y

Note that without rank reduction (u is an identity) R,, = L I, where I is an identity matrix.
Now condition on z, z(1),...,z(L) and note that the quantity inside the absolute value signs

in the denominator of (3) can be expressed in matrix form as (as in [6] for the case

without mismatch)
DED" =D(I - Z"R*Z)D" @
where

D =(d(1),d(2),....d(L))

and

Z =(z(1),z(2),...,z(L))

It is possible to demonstrate (see Appendix) that the matrix X in (7) has rank L-M where

M<N-1 (M=N-1 in cases with no rank reduction). Recall M is the column rank of the

rank reduction matrix u. It is also possible to demonstrate (see Appendix) that Z Hﬁz_ 'z
is an idempotent projection matrix. Using this and results from [7, pp. 113-118] and {8,
pp. 27-29], it follows that the denominator of (3), when conditioned on z, z(1),...z(L), is a
constant factor of %; times a central chi-square distributed random variable, with 2(L-M)
degrees of freedom. Such a random variable is denoted by xzz(L_M). In a similar way the

term in the numerator of (3), inside the | 1% is
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L
y, =d-Y d(k)z(k)"R]'z ®)
k=1

which is zero-mean, complex Gaussian distributed when conditioned on z, z(1),...z(L) and
assuming signal is not present. Under the same conditioning, when signal is present, y, is
complex Gaussian distributed with mean . Under either signal absent or signal present

the variance of y, (same conditioning) is
1 A
Var{y }=—=Var{d}+ z"R'z
pP

(see Appendix for justification and the value of Var{d}). Next, we properly normalize
(multiply by p) the numerator of (3) so it is the square of a unit-variance complex
Gaussian. Conditioned on z, z(1),...z(L), another Theorem from [7, pp. 113-118] shows
that | p'? y,1% is a constant factor of %2 times a non-central chi-square distributed random
variable with 2 degrees of freedom, xzz(p IB?), when signal is present. When signal is
absent, the same holds true with §=0. Thus, in summary, conditioned on z, z(1),...z(L)
the test statistic in (3) is the ratio of a non-central chi-squared random variable with 2
degrees of freedom to O times a central chi-squared random variable with 2(L-M)

degrees of freedom

7 (Pl
PZzZ(L—M)(O)

AMF ~

Under the assumption that the reference data are independent from the data from the

cell-under-test, the two chi-squared random variables in the numerator and denominator
of Agmr are independent. Then, from [8, p. 24-25] (with slight extension for complex

quantities) the probability density function (pdf ) of the test statistic is
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_(L-M)pexp(~p|p’))

fAAMF|p,H,(Mp) (1+pﬂ,) L-M+1 1Fx(L_ M +1;1;Q) (©)
where
i
1+ pA

Equation (9) gives the pdf of Aamr when conditioned on z, z(1),...z(L) which is
equivalent to conditioning on p as indicated by the notation used in (9). Further the
result in (9) was obtained under the signal present (H;) hypothesis. In (9) ;Fi(a;b;c) is
used to denote the generalized hypergeometric function [8, p. 20]. The result in (9) is
valid for signal absent (H)) if one sets B=0.

To find the unconditional pdf of Aaur, (9) must be averaged over the random fluctuations
due to estimating the covariance matrix in (3). It is interesting that the loss due to this

estimation enters (9) only through p. It is helpful to notice that p is directly related to the

observations, as stated previously, by

1 1
p_1+sz(’z'lz C1+ERE

(10)

where
— D-1/2
éz - Rz <

Thus the pdf for p has support for p between 0 and 1/Var{d} (otherwise the pdf is zero).
To perform the required averaging, first note that the estimated covariance matrix in (2)
is characterized by the Wishart distribution [8,9] when the reference vectors x(k), k=1,...L

are assumed to be- independent and each identically distributed with zero mean and
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covariance R;,. The pdf for the transformed covariance matrix is also characterized by the

Wishart distribution [10]

£ (R)= “ IRZIL_N+l exp(—tr[(u” u)-l R.D

(11)
V2V DNDE(L) (L~ N+ 2fuu|

Now consider the pdf of £,. Under conditioning, &, is complex Gaussian distributed as

A R, |exp "'ng R zéz
félﬁz(ézmz):l ’ n,((N—l) : ) (12

where
Rt;l — E{ézézH} — E{ﬁ;llzuHBVRS—;/ZRIRS—dl/ZBvHuRZ—I/Z}

Then the unconditional pdf is

£, €)= [ £ €. 1R )f, (R R,

(13)

where (11) and (12) are inserted. Replacing &FR,&, with tr[R,; EE] in (12) further
simplifies (13). Using (13) and (9), the unconditional pdf of the test statistic is

f AnurlH, (/’L ) = ”J[f/\,,,,,,lp,ﬂl (/,L I P )] | p=1/(Var{d? hePE ) fgz (53 )dg . (14)

allg;
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Distribution of p

It turns out that it is possible to find the distribution of p in (10) a different way which
leads to an easier way to compute quantities like that computed in (14). To simplify
things a bit, let us ignore rank reduction in the rest of this document so now we assume

M=N-1. Now consider the random variable (z is a length N-1 vector)

= ¢ Sl (15

Now, from (15), P is the ratio of two random variables. From [13, p 927] the first, S; is a

central chi-squared random variable with 2(L-N+2) degrees of freedom and S, is
independent of S;. The pdf of S, is

£u) = 5 o-2) T

T2 T(L-N+2) T\ 2

provided s is positive, otherwise the pdf is zero. In the case without mismatch, from
{7,8], the second random variable, S; is a central chi-squared random variable with 2(N-
1) degrees of freedom. In cases with mismatch the distribution for S, is more
complicated as we now demonstrate by extending some results from [17]. Since z is

complex Gaussian with zero mean and covariance matrix
-1/2 -1/2 pH
RMM - Bv de Rt de Bv

we can write

= —_— —-7z"R7 7)d
LR exp(—z"R;,,z)dz |

MM|

By factoring Ryp==Z" and defining a=Z"'z we find
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(~a"a)da

Now by forming an N-1 by N-1 unitary ( v v = I) matrix of eigenvectors ¥ such that
v (E E) y = @ where @ is diagonal with elements ¢;, ¢

a"z"zZagy T

¢y.; along the diagonal and

.....

defining w = l[ﬁa = (wy,...,wn.;)T we obtain

Prfzfz<y]= | }_ifexp(— whwdw = Pr[pr,-lelz = y)

wHdwsy

Note that the eigenvalues ¢, ¢, ¢n.; of E7 Z are exactly the same as those of Ry

.....

[17]. Thus the distribution of S; is the same as the distribution of

N-1

2%.9,

j=1

W.2

J

where the Wjs are independent and identically distributed zero-mean and unit-variance
complex Gaussian random variables and ¢, ¢,,.., ¢.; are the eigenvalues of Ryu. Thus S,

has characteristic function (t is the frequency variable)

Esexp it22¢jle|2} =l[jj;:_wlexp(—‘wjlz)exp(itZ(pj‘wjlz}le

T

FIE. Lol 20 o, ~ -0

a7

where i=V-1. By expanding (17) into a partial fraction expansion one finds the pdf of S,.
First assume that all the eigenvalues are distinct so (17) becomes, after partial fraction

expansion
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N-1 1 N-1 bj
[—7=2

. (18)
1= th(l)j = 1= 21t¢j
with
N2 T -1
b,=9¢, H(¢j —¢k)
k=lksj
So the pdf for S is (a mixture of chi-squared random variables with 2 degrees of
freedom, each scaled by ¢))
N-1 b s
[ (s,)= 2 (19)
i=1 2¢ 2¢1

as long as s; is positive (the pdf is zero otherwise). If any of the eigenvalues are repeated,
this is easy to handle. If a particular ¢j=¢ is repeated r times this leads to replacing r

terms on the right hand side of (18) with (the new partial fraction expansion)
r B
X
= (1— 2itp)’

and thus these terms contribute a weighted sum (weighted by B;) of chi-squared random

variables with different degrees of freedom, each scaled by ¢, or in equation form they

contribute

S

j=1

r ¢ s
B - Q2
250%™ 20 ”

to (19) as long as s, is positive (the pdf is zero otherwise). Using (19) and (20) as
appropriate one can find the pdf of S,.
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Now returning to (15) we find

fo(p)= 5. 15 (s, £, (s, )ds, @1)

for p 20. (21) is derived in the Appendix. For example, if no eigevalues are repeated (21)
becomes from (16) and (19)

_  (ps)exp(=ps, /)b, [,
fp(p)_ L:osz 2 €xXp 2¢j S,

2" (L-N+2) 1329,
_ 2L—N+3r(L_ N+3) Nl b.pL-NH

= 2L-N+21-(L_N+2) P 2¢j(p+1/¢j)L—N+3 X

- ((p+119, )sz)bm2 s,
o TL-N+3) exp(— S(p+1/9, ))(p +1/¢,)ds,

_2"T(L-N+3)@  bp™ a(L-N+2pp™
2L-N+2 F(L— N + 2) = 2¢J(p +1/¢j)L—N+3 Jj= ¢j (p +1/ ¢j )L—N+3

(22)

where we used the normalization of a chi-squared pdf. If an eigenvalue ¢ is repeated r

times then (16), (20) and (21) lead to a result with terms like

- L-N+1 _ , B j-1
I _ S2 (pszL)_.N+2 exp( pS2 /2) Z i ; . (f'z') exp(-iz'— S2 =
90 * 2VVIT(L-N+2) S2'T(j)e\ ¢ 2¢

r 2L—N+j+2r(L_N+j+2) B-pL_N+l

J

o 2FYUT(L-N+2) 2'T(j)e’(p+1/9)

J,.., ((p+1/¢)s2)L—N+j+l
2=02 NP (L_N + j+2)

L-N+j+2 X

exp(—%(p+1/¢>))(p+1/¢>)ars2

22L-N-¢-_]+21-‘(Il N+]+2) ijL-N-H
e LoNe r( -N+2) 2/T(j)¢’(p+1/¢)" "™
4 S(L-N+j+1)pt

=27

= (j-1) L N+1)1¢/(p+1/¢)"""

(23)
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for the terms corresponding to a repeated eigenvalue. Using (22) and (23) allows one to
find a closed form expression for the pdf of P in any given case. One must simply

substitute the terms in (23) into (22) in replacement of the terms in (22) that correspond

to repeated eigenvalues.

Now we can use the distribution of P to find the distribution of p. First consider the pdf

of R = 1/P which is (using standard transformation of random variable techniques)

11
fR(r)sz(_ ) (24)
r;r
which applies for positive r (otherwise the pdf is zero). Then the pdf of Y=Var{d}+R is

1
y—Var{d}

1

£, ()= fo(y -Var{d})= y—Var{d}

Je

(25)
for y between Var{d} and infinity. Finally p = 1/Y 50°
_ 1 (1
fp(pIHo)"fp(le1):'_2fY _
P>\ p
) (26)

_ 1 ¥ p
1-Var{d}p )"\ 1-Var{d}p

for O<p<1/Var{d}, otherwise the pdf is zero.

2 In this case the pdf of p is the same under Hy and H,, but in cases considered later this is not true. This is the reason
for the notation used in (26).
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A Consistency Check

Note that in the case without mismatch (R;s = R;) we have ¢, = ¢, =...= @y, =1 and so
(19) becomes (20) with r=N-1 and B;=B,=...=By.,=0, By.;=1 and so in this case S:
becomes a chi-squared random variable with 2(N-1) degrees of freedom. Under this
condition the random variable P is a ratio of two chi-squared random variables and from

[8] we find P is an F random variable with pdf (similar to (9))

L!p(L-N+1)
(L= N+1)(N=-2)(1+p)*"

£+(p) 27

since
F(L+1,L-N+2;0)=1

Equation (27) applies for p between 0 and infinity (otherwise the pdf is zero). Now
applying (24), (25), and (26) we can use the transformation to R and Y and finally p for
Var{d}=1 to obtain (for O<p<I)

L!pL—N+1 (l_p)N—Z
(L= N+1)(N -2)!

fo(pHy) = £,(plH,) (28)

which matches the result in [3] as expected. As a second check, consider the case
without mismatch again. We note that in this case (23) applies with ¢; = ¢ =...= ¢y =1
and r=N-1 and B;=B>=...=By,=0, Bn.1=1. So we evaluate (23) under these conditions

and we obtain (27) and ultimately (28) which matches the result in [3] as expected.
Probability of detection and false Alarm

The distributions of p found in the last section lead to an easier way, as compared to (14),
to derive the detection and false alarm probabilities. The approach is similar to that taken
in [3] for cases without mismatch. Conditioned on p, we have already shown (see

discussion between (8) and (9)) that our test statistic has exactly the same form as the one

85




in [3, equation (27)] and so by the same arguments given there we find that the false

alarm probability conditioned on p is

1

P =
* (1+1p)

FA

LN+ (29)

where 7 is the threshold (3) is compared to’. It is interesting that this is exactly the

expression for a scalar CFAR case with L-N+1 reference samples (Kelly has discussed

this in [14]). The unconditional false alarm probability is

1/Var{d} 1

P

FA

) 1+70)™™ oo Hup ~

where (26) should be inserted. The expression in (30) can be evaluated by numerical

integration. Under H,, the detection probability conditioned on p is obtained from

[3.equation (33)] as
1 o (L-N+1) o (18P
P =1- )G | ——
i (+170) " ,,,21 (L—-N+l—m)!m!( )y G. 1+1p
(31)
where
G,l) = expl )T L

as defined in [3]. Using (26) and (31) gives the unconditional probability of detection as

3 The same threshold is compared to (1).
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1/Var{d}

B,= [P, f.(plH)Yp

0
Effects of Mismatch: Numerical results

Now we wish to investigate the effects of mismatch and at the same time we check the
correctness of (30) and (32). For the case with mismatch (26) implies that performance is

sensitive to how much
_ JHp-12 ~1/2
Var{d}=v"R?RR,"*v 33

differs from unity. Further, (22) and (23) indicate that performance is also sensitive to

how much the eigenvalues of
_ -1/2 -1/2 pH
RMM - Bv Rsa’ Rtde B, G4

differ from unity. Var{d} and the eigenvalues of Ruy are the only parameters which
effect performance* so we present results for various values of these parameters. We
compare calculated results using (30) and (32) to Monte carlo simulations using 50,000

trials.

Consider the specific case of N=4, L=8 and a probability of false alarm of 0.0]. Similar
results are obtained in other cases. First consider the case with the eigenvalues of Ry
fixed at C=[¢;, ¢, ¢; ]. The results in Fig. 1 show that the probability of detection
generally increases as Var{d} decreases with C fixed. This is reasonable since 1/Var{d}
measures the SNR of d and any signal energy will end up in d. Note the excellent
agreement between the curves produced by (30) and (32) and the “points” produced by

the Monte carlo simulations. In Fig. 2, Var{d} is fixed and C is varied. We see that

4 Of course performance also depends on N and L as indicated in (22) and (23), leading to a dependence in p similar to
that in (27). :
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increasing any eigenvalue, ¢ is similar to increasing Var{d}. This is reasonable since
each eigenvalue can be thought of as the noise-plus-clutter power from unwhitened noise-
plus-clutter in a particular one-dimensional subspace. Clearly increasing noise-plus-
clutter power should lead to a decrease in performance. Again, there is excellent
agreement between the calculated and simulated results. In the results in Fig. 1 and Fig.
2 the threshold of the test is changed each time Var{d} or C is changed so that the
probability of false alarm is fixed at 0.01. This provides an easy to interpret result.

In practice, both probability of detection and probability of false alarm will be altered due
to mismatch so now we consider changes in false alarm probability. Here we fix the
threshold at the value needed to achieve the correct probability of false alarm, 0.01, for
the case without mismatch, Var{d}=1 and C=[1,1,1]. Fig.3 gives results for fixed C and
Fig. 4 gives results for fixed Var{d}. The results indicate that increasing Var{d} or any
of the components of C leads to an increase in the probability of false alarm. This can be
expected based on the interpretations of Var{d} and C in the last paragraph. Increasing

either of these is like increasing the effective noise-plus-clutter power.

Now we consider an airborne radar example where ground clutter produces a clutter ridge
in the two dimensional spatial-Doppler power spectral density (psd). For simpilicity, we
consider R; and Ry; modeled by the simple model described in [11]. This model places
Gaussian humps along a line in the angle-Doppler plane to model the clutter ridge as

shown in the psd in Fig. 5. The equation for this psd is .

Pc(f,,fs) i ————eXp| — (f’—f“-d) +(fs~fcs,d)

= 27r0' O'ﬁd 20,, 20,

which is a function of doppler frequency f, and spatial frequency f: . This psd consists

of L Gaussian-shaped humps, the d th of which is centered at (ﬂ , fs) = (fa, 43 fcs’ d)

and has amplitude controlled by O Cz , and a spread in angle and doppler controlled by
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2 2 . . . o
a @0d O 7.4+ The choices of the parameters used in the above equation are given in

o

Table 1. The extra hump in Fig. 5 is inserted just in either the psd for the cell-under-test
(corresponds to altering R, [I1]) or in the psd for the reference data (corresponds to
altering Ry [11]). This extra hump models mismatch, possibly due to some discrete
scatterers. The target is located near the extra hump to have maximum effect. The
performance results are shown in Fig. 6 for several different choices of target location
and extra hump location. For each different choice for the location of the extra hump, the
threshold of the test is changed to maintain the false alarm probability of 0.01. In all
cases, if the hump is added in the reference data performance improves, but if the hump is
added to the cell-under-test data performance degrades. This simple example illustrates

the use of our equations in an airborne radar application.

One can explain the results in Fig. 1 through Fig . 6 by considering the changes in the pdf
of p caused by changes in var{d} or C. Any of the decreases in Var{d} or ¢; causes the
mass in the pdf of p to move towards larger values of p. Due to the decreasing nature of
the function multiplying the pdf of p in the integrand of (30), this causes a decrease in the

probability of false alarm. It is possible to apply similar analysis to explain changes in

probability of detection also.

Extension to a more general class of Tests

Consider the class of tests considered in [12] which compare Ay to
Y[1+ xR 'x] (35)

If o=0 this is the test we considered previously with 7=7 If a=1 then this becomes the
Generalized Likelihood Ratio (GLR) test [4]. In [12] ot is called a sensitivity factor. The

only difference between the above formula and (2) in [12] is due to the missing /L in our
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(2) (compare to (3) in [12]). Applying the same transformations as before yields that this

is equivalent to comparing the simplified test statistic in (3) to the threshold

a
¥ (l1-a)+—= (36)
1-yo p
This means we can find the probability of false alarm and the probability of detection for

this more general class of tests by using (29) through (32) with 7 replaced by the quantity
in (36).

It is of interest to extend the results to other STAP algorithms. One extension is

considered in the next section,

Steering and Covariance Mismatch

Now consider the case where both the steering vector and the covariance matrix have
mismatch. This case provides performance for ADPCA for cases with covariance matrix
mismatch. Consider the test in (1) when the steering vector is g, but were the true signal
vector that is observed is the vector ks. As in the previous case, first apply a coordinate
transform, which consists of multiplication by R.i'”, to the observed vector from the
cell-under test, the reference data vectors and to the signal and steering vectors. Next,
normalize the transformed signal vector so that it is again a unit vector. Call the
transformed unit signal vector v. So that signal-to-noise ratio is maintained, the
transformed signal is taken to be [(s7 Ry Is2) K v. Similarly, call the normalized
transformed steering vector g,. Next, another transformation of coordinates, which
consists of multiplication by ( qu,BqH )H, is made to the cell-under-test vector, the
reference data vectors and to the signal and steering vectors. Here B, is a matrix whose
N-1 rows consist of a set of N dimensional vectors that span the space orthogonal to g,.

The matrix ( qu,BqH ) is taken to be unitary. Denote the transformed vector for the cell-
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under-test by y = (d, z )’. Here d is a scalar that describes the component of the vector
de'mx which lies in the direction of g,. On the other hand, z is an N-1 dimensional vector
describing the component of R."”x which is orthogonal to g,. For the transformed
reference vectors employ the notation y(k) = ( d(k), z(k)T )T. Under the assumptions
outlined, we again obtain (3). Further, the previous observations about (3) still hold,

except that, under H;, the expected value of y, given z, z(1), z(2),...,z(L) is now

H -1
E{y |H }= Rs 37

R—-]
and so
H p~1 2
2 q Rs 2
1o | === ||
de

A ~ (38)
- PX 22( L-M) (0)

Thus the result in (38) is similar to the previous result (see the distribution of Aamr just
prior to (9)), but with a different effective value of B. The results like (9) and (15) still
hold (with B set as suggested by (38)) and in fact (26) still gives the correct distribution

of p under H, if we define
_ -1/2 -1/2 pH
RMM - Bq de Rtde Bq

However (26) does not give the correct distribution of p under H,. Now, since ¢ and s
don’t point in the same direction, only part of the signal goes into d, while the other part
goes into z. Thus, under H; we find S; = 2 Z'z contains signal which alters the results
given by (19) and (20) and thus (22) and (23). This is the key difference in this case.
The signal in z also changes the effective SSNR. As we see in (38) the effective value of
SSNR is reduced from i1 to
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Hp-1 |?
’q des’

8L, = e, 1Y =| 2 b =B cos'e)

which might be called the SSNR in the subspace spanned by the steering vector. Here
cos(6) is defined by this equation using the previous definition of | Bl2 =l (s" R;"s). For

simplicity we take
H p-1
q de S

cos(f )=
@ V4" Riqs"R}s

where an unimportant possible complex multiple has been ommitted [3]. Now the part of

|B1? which was lost went into z and is

[ =|E{z1 B =|B[ sin*(0)=|B,R."s |«

which could be called the SSNR in the subspace orthogonal to the steering vector.

The signal entering z changes the distribution of S, Thus, we now consider the
distribution of S, (the distribution of S; is still given by (16)). Again we extend some
results in [17]. Under H, z is Gaussian with mean g, =Bqud'1’2m and covariance matrix

Rysp. Thus, we can write

1

nN—llRMMl

Prlz"z<yl= | expl—(z—11,)" Ry, (2 — 1, )iz

Mgy

By factoring Ryp==Z" and defining a=="'z and p,= = U, we find

Prlz"z<yl= | 11H exp(~(a—p, ) (a—p,)Ma
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Now by forming an N-1 by N- unitary ( 'y = I) matrix of eigenvectors  such that

.....

definingu = Y 4 and 0= v o = (w,..., 0n.1)7 we obtain

Pr[z7z < y]|= _[ },_l exp(— (u—w)" (u— a)))du

u”(buSy T

1 N-1
= j —exp(—ww)dw = Pr z(bj \WJ + a)jl2 <y
(s @(wra)ey 7T =

where w = u-@. Again, we note that the eigenvalues ¢, @2, @y of = are exactly

the same as those of Ry [17].

Thus the distribution S, = 2 7"z is the same as the distribution of
N-1 ’
2'21 ¢, le + j! (39)
j=

where as before the Wjs are independent and identically distributed zero-mean and unit
variance complex Gaussian random variables. In (39) (@j,..., @n.)" =y Z7'B,Ry*xs.

Also, as before ¢;, ¢, ¢v.; are the eigenvalues of Ry Now the characteristic function

for S; must be, using (39)
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N-1 )
E{exp it2z¢j‘Wj+a)j\
j=1

Iijf 0%exp( \wl )exp(zt2¢ ‘w +a)| )Iw

j j (21t¢ [x+a) )2 (y+a) )2])——exp (x +y ))dxdy
=TI mexpl- (e o 120, o

y=_°°-:/_’;exp(_ (}7 + U, )2 (1 —2it¢ i )}ly
exp(2it¢j ‘cojlz )exp([,u;j + U, - 2it}, )

—

Jj=l x

ey (2igof
_g(l 2itd jT exp ——_—_1—2it¢j
(40)

where @; = wg; + i@y and W = Ug; + iyy; are suitably chosen to make (40) true (pick the

cross terms in the quadratic in the exponential to match). Now note from (40), that if all
¢; = 1 and @; = 0 (this occurs without mismatch, where R,;=R;and s=q) then (40) implies
that S; is central chi-squared with 2(N-1) degrees of freedom as suggested by the known
result for the case without mismatch. If there is mismatch in covariance, but no
mismatch in steering vector, then ; = 0 and (40) matches (17). Suppose there is no
mismatch of covariance matrix R,z=R, but that there is a mismatch in steering vector so
s#q. Then from (40), S; has a noncentral chi-squared pdf with 2(N-1) degrees of
freedom, which is denoted by ¥2n-1)( l@l?). Thus R=1/P has an F distribution [8]
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Lir"? exp(-|o?)) of -
IH — F| L l;N—l;———
o (L) (L-N+1I(N=-2)+r)"" " i I=r

The pdf of p can be found using (25), (26) and the series expansion for ;F; in [8] to be
-p)p expl- o)
(L-N+1)(N=2)

1 2|m (L + 1 + m)! L-N+H N+m-2
0) 1-
| (L+1-NXN +m-2) (1=p)

fouplH, )= F(L+1N -1 p)

= expl- |3,

m=0 m!
which checks with (30) from [3] which is appropriate for this case.

To invert (40) to obtain a pdf (in the general case) it is useful [17] to expand (40) in terms
of 8 = 1/(1 - 2it{) by rewriting (40) as

E{exp(itZNi oW o )} =

( )
2 -1
—_p v 2o, N-1
exp —[1—22]2—: % ]l § 14 1- 1—(1% 41)
Ti-gl1-= |7 A /
\ \ 9, J

=9N‘liej9j
=0

By canceling 6" from both sides of (41), the coefficients of the expansion can be found

by using the standard formula for Taylor series. They can be expressed as
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e, = [exp(— N2;|co I ﬂ N: g— )

1 r=1
e =— > B e for >0 (43)

- (44)

Now note that (41) says we can represent the distribution of S; as

N-2+j
N _5
fils)=2 e 12”'“11“(1\/ 1+ ) Xp( 2g) “

which is a mixture of central chi-squared pdfs. In (45), we set {=1 if all the ¢; 21.

Otherwise we set { = min; ¢;. Now use (16), (21) and (45) to find that the pdf of p is

_r . (ps,) " exp(-ps,/2)
A R Ty

(&jNZtJ (46)

o 2N 1+JF(1V—-1+ ])g 2¢

which simplifies to
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oo L—N+12L+j+lr L+ .+1
fP(p)zzej p ( J ) +j+1 X

L
=0T ot (L— N+ 2)O(N =1+ )( + 1 )
( T ( jlp /g

(e o],

2L+]+IF(L+]+1)gN—l+J
= p (L + j+1)

=Ze] L+ j+1 '
= T(L-N+2)[(N - 1+J)(p+/) gl

(47)

for p 20. Using (47) in (26) provides the desired distribution for p under H;. Then (29),
(30), (31) and (32) provide the probability of false alarm (using the previously found pdf

for p under Hy) and detection.

Now note that if ¢; = ¢, =...= @y.; =1 (which occurs if Ry = R,, thus no mismatch)

thenep = 1 and ej= 0, j #0 from (42), (43), and (44). In this case (45) becomes a 2(N-1)
central chi-squared pdf as required and (47) matches with (27).

Steering and Covariance Mismatch:

An Explanation for the good performance of ADPCA

We have performed numerical studies for cases with steering vector mismatch similar to
those in Fig. 1 through 6. These results illustrate that performance varies with Var{d}
and ¢, j=1,2,...,N-1 in 2 manner similar to that shown in Fig. 1 through 6. Also 181,
plays a role similar to that played by |81* (SSNR) in Fig. 1 through 6. Finally, @ is a new
parameter for the case with steering vector mismatch, but it is easy to understand the role

of @ An increase in any component of @ generally leads to decreases in probability of
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detection and no change to probability of false alarm. Since @ is a transformation of the

signal that is orthogonal to the steering vector this is reasonable.

Probably, the most interesting aspect of the results is that steering vector mismatch can
sometimes offset covariance matrix mismatch. In fact, this appears to explain the good
performance of ADPCA which was observed in pervious studies. Recall that one key
aspect of ADPCA is that it does not use the optimum steering vector for the case where
the covariance matrix is exactly known. Instead, it uses a steering vector that can whiten
clutter that was not completely whitened after multiplication by the inverse of the
estimated covariance matrix. Some examples of cases where steering vector mismatch
offsets covariance matrix mismatch are provided in Fig. 7. In each case we see the
probability of detection curve for the case of both steering and covariance matrix
mismatch is above the curve for the case with just covariance matrix mismatch. We note
that this does not always occur. In Fig. 8, we show cases where the probability of
detection curve for the case of both steering and covariance matrix mismatch is below the
curve for the case with just covariance matrix mismatch.

In fact, it is easy to explain one case where steering vector mismatch can sometimes
offset a covariance matrix mismatch. Consider the case where L is very large so that R,
is very close to R;in the case without covariance matrix mismatch and R, is very close to
R;q In the case with mismatch. Now recall that R, is used in the test statistic in (1) and
that if L is very large the denominator of (1) is close to a constant which can be
considered part of the threshold that is chosen to set the required false alarm probability.
Now it is easy to imagine that one can choose a mismatched g that can make qH de'l

closer to the optimum value of s R than s de'l is. In fact, this is exactly the case

shown in Fig. 6.
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Conclusion

We would like to continue studying mismatch in order to develop STAP schemes that are
robust to mismatches. We believe this is an important practical issue that deserves
attention and that significant advanced can be made through such research. We believe

this is clearly demonstrated by the results given in this report.
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Appendix
Simplification of Aamr

Apply the transformations and normalizations as required to (1). Then use the Frobenius

relation [4] in (1) to obtain

2

(A zZRz zd)_d_rsd Rz ( 3 zZRz zd)-l
|63 -rir: rzd]|

Simplification of this (multiply numerator and denominator by the scalar equal to the

A AMF =

square of the inverse of the denominator) gives (3).

Rank Of C

Defining

B = (b(1),b(2),....b(L))"

and assuming L>M and that B is full column rank (this occurs with probability 1) gives

2"R'2 = (u"B)" |(u” B)u*B)" | (u"B)

Now noting that the column rank of u is M, implies that the rank of all of the three

matrices in the product above must be M and so the product must have rank M [8,

Appendix]. Thus multiplication by Z HRZ— 'z projects onto an M dimensional space.

Similarly I —Z Hﬁ; 'Z (Iis an L by L identity matrix) projects onto an L-M dimensional

space.
Idempotence

By direct calculétion
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(z"R;'z)z"R;'2)=(2"R'Z)
Variance of y,

Using (8), the independence of d,d(! ),-..,d(L), and conditioning on z, z(1),..., Z(L) gives

Var{y,}= Var{d WE { 2}

=Var{d}+ E{d(k)* k" R R R 2 = Var{d}+ Efa (k)* * B2

since d(1), ...., d(L) are iid. Also

ﬁd(k)z(k)” Rz
k=1

Var{d}=v"R"*RR %

5

and
E{dx)*}=1
Derivation of (21)
(g = ()
Pr\p < Ei— <p +dp) = f.(p)dp = _([( ;l;fslsz (sl,sz)dsl}dszdp

oo

= | £y, (Ps,.8,)s,ds,dp = j £, (ps,)f,, (s,)s,ds,dp
0

o
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Table 1. Parameters of the power spectral density model in Fig.

-

d fct.d fu.d o-ﬁ.d Gfs.d ac,d
1 -0.35 -0.35 0.03 0.03 8.00
2 -0.20 -0.20 0.03 0.03 8.00
3 0.00 0.00 0.03 0.03 9.98
4 0.20 0.20 0.03 0.03 8.00
5 0.35 0.35 0.03 0.03 8.00
extra hump 0.38 0.18 0.03 0.03 7.00
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